Nowoczesne technologie teledetekcyjne w geologii

Source: JohanSwanepoel/FOTOLIA.com

Mirosław Kamiński, Zbigniew Perski, Jacek Rubinkiewicz, Tomasz Wojciechowski

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Teledetekcja - zespół metod badawczych (technologii) pozwalających uzyskać informację o badanym obiekcie w sposób zdalny (bezdotykowy, nieniszczący)

W geologii:

- badanie form rzeźby powierzchni terenu (geomorfologia) i jej zmian (deformacje)
- badanie wgłębnej budowy geologicznej bez udziału wierceń (metody geofizyczne)

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

TECHNOLOGIE TELEDEKCYJNE STOSOWANE PRZEZ PIG-PIB

1. Zdjęcia lotnicze, Lotniczy i naziemny skaning laserowy:

- wykonywanie map osuwisk i terenów zagrozonych ruchami masowymi
- wykonywanie i reambulacja map geologicznych, badania tektoniki
- pomiary dynamiki osuwisk

2. Satelitarna interferometria radarowa

- badanie współczesnej dynamiki skorupy Ziemskiej (geodynamika)
- pomiary dynamiki osuwisk
- badanie deformacji związanych z podziemną eksploatacja surowców

3. Tomografia elektrooporowa

• modelowanie 3D wgłębnej budowy geologicznej

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Wybrane zagadnienia wykorzystania wysokorozdzielczych lotniczych danych skaningu laserowego w kartografii osuwisk i budowy geologicznej Karpat fliszowych oraz Tatr

Jacek Rubinkiewicz, Tomasz Wojciechowski

- Dane wejściowe: chmura punktów pozyskana z lotniczego skaningu w ramach projektu ISOK gęstość od 4 do 12 pkt./m2
- Dane poddane przetwarzaniu i filtracji w CODGiK lub autorskiej filtracji w dostępnym oprogramowaniu np. LP 360, Scoop++, DTMaster w celu uzyskania numerycznego modelu powierzchni terenu
- Wizualizacja danych w oprogramowaniu Global Mapper, ArcGis, Microdem, LP360, Scoop++, DTMaster itp.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Geologiczna interpretacja numerycznego modelu powierzchni terenu pochodzącego z lotniczego skanowania laserowego obejmująca rejon Doliny Suchej Kasprowej

Wójcik i inni, 2013; Cymerman, 2014; Wojciechowski i in., 2014

Wojciechowski, Perski, 2014: Badania geologiczne i geomorfologiczne [w:] Wykorzystanie danych pochodzących z lotniczego skaningu laserowego.

Podręcznik - w druku

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

www.pgi.gov.pl

Objaśnienia

osady den dolinnych i tarasów rzecznych 2 koluwia osuwiskowe głazy i rumosze skalne stożków usypiskowych (piargi) 4 głazy i rumosze moren niwalnych standarzy i rumosze skalne lodowców gruzowych głazy i rumosze skalne lodowców gruzowych **17** głazy, rumosze skalne morenowe, zaglinione głazy, rumosze skalne, zaglinione wapienie masywne, krynoidowe i bulaste 10 wapienie i dolomity granity porfirowate inne, starsze skały krystaliczne nasunięcia i uskoki

Geometria fałdów

J. Rubinkiewicz - Dane ISOK

Struktury geologiczne w piaskowcach magurskich budujących obszar w strefie granicznej Polski ze Słowacją, w rejonie Przełęczy Beskid i Czeremchy. Wizualizacja danych ISOK.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Wojciechowski, Perski, 2014: Badania geologiczne i geomorfologiczne [w:] Wykorzystanie danych pochodzących z lotniczego skaningu laserowego.

Podręcznik – w druku

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Wizualizacja danych ALS (ISOK) pod kątem interpretacji holoceńskich osadów o fluwialnej genezie w Dolinie Nidy

Wyraźnie widoczne jest współczesne, meandrujące koryto, starorzecza, tarasy rzeczne. Wysoczyzny wyznaczają zasięg wychodni gipsów mioceńskich

Wojciechowski, Perski, 2014:

Badania geologiczne i geomorfologiczne [w:] Wykorzystanie danych pochodzących z lotniczego skaningu laserowego. Podrecznik – w druku

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Dane lotniczego skaningu laserowego w badaniu osuwisk

Obszar rejonu Przydonicy na Pogórzu Rożnowskim, charakteryzującego się wysoką podatnością osuwiskową. Wizualizacja danych ISOK.

Wojciechowski, Perski, 2014: Badania geologiczne i geomorfologiczne [w:] Wykorzystanie danych pochodzących z lotniczego skaningu laserowego. Podręcznik - nieopublikowane

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Kartografia osuwisk

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Kartografia osuwisk

J. Rubinkiewicz

Uskok nożycowy

Skarpa główna

Skarpa wtórna

P

_ Obszar uaktywniony

Uskok nożycowy

 From Pos: 70210.544, 215990.623
 To Pos: 702519.236, 215571.626

 500 m
 Skarpā główna

 475 m
 Skarpa wtórna

 450 m
 Skarpa wtórna

 425 m
 Skarpa wtórna

 400 m
 550 m

 125 m
 250 m
 375 m

 588 m

Jęzor osuwiskowy

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Badanie dynamiki osuwisk

Model różnicowy obrazujący deformację powierzchni osuwiska w Szczepanowicach w okresie od lipca 2010 (zlecenie PIG-PIB) do listopada 2011 roku (ISOK).

Schemat ideowy tworzenia modeli różnicowych na podstawie powtarzalnego lotniczego skanowania laserowego

(źródło: Borkowski i in., 2012)

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Zdjęcia lotnicze – cyfrowa fotogrametria

2002

Modele warstwicowe

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

M. Kamiński

Osuwisko "Śliwnica" – Pogórze Dynowskie

Mapa przemieszczeń mas skalnych pomiędzy 1965 i 2002 rokiem. 1,3 - akumulacja , 2, 4 - erozja.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Dynamika osuwiska w Kłodnem koło Limanowej

Tworzenie modeli różnicowych z wykorzystaniem danych fotogrametrycznych oraz naziemnego i lotniczego skaningu laserowego A: Deformacja główna (LIDAR - LPIS) B: Deformacja 2010-2011 (TLS - LIDAR) C: Miąższość koluwiów.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Satelitarna interferometria radarowa

Metoda wykorzystująca wzajemne przesunięcia (różnice) fazy dwóch zobrazowań SAR samego obiektu.

Baza geometryczna – różnica pozycji sensora pomiędzy obserwacjami

Baza czasowa – czas jaki upłynął pomiędzy wykonaniem obserwacji

Interferogram

- Faza "zawinięta" w cykle [- Π , + Π], liczba cykli nieznana
- Jeden "prążek" to cykl fazy 2Π widoczny jako sekwe<u>ncja barw</u>

Kłodne InSAR – analiza przemieszczeń (jesień 2011)

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

PSI: rozpraszacz stabilny (PS)

Obiekt fizyczny charakteryzujący się bardzo wysokim rozpraszaniem wstecznym którego amplituda jest dominująca dla wartości piksela
Dla obiektów tego typu, obie składowe sygnału: faza i amplituda wykazują bardzo wysoką stabilność w czasie (dla kolejnych obserwacji).

coherent targets, coherent scatterers, PS: persistent scatterers, permanent scatterers

Osuwiska "Just" i "Tęgoborze" – analiza przemieszczeń metodą PSI

Monitoring osiadania powierzchni terenu w trzech wybranych lokalizacjach poszukiwań gazu łupkowego

Metody pomiarowe;

- Insar
- Gnss

Infrastruktura pomiarowa;

- Reflektory
- Punkty pomiarowe
- Punkty referencyjne
- Stacje meteorologiczne

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Reflektory radarowe na obrazach SAR z satelity TerraSAR-X

Poligon "Lewino" w ramach projektu "**Monitoring osiadania** powierzchni terenu w trzech wybranych lokalizacjach poszukiwań gazu łupkowego"

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Wykorzystanie reflektorów radarowych do walidacji danych SAR rejestrowanych przez nowego satelitę Sentinel-1 Projekt InSARap finansowany przez ESA

Pierwszy na Świecie interferogram z danych Sentinel-1 przedstawiający terytorium Polski

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Zastosowanie interferomerii SAR do badania pogórniczych deformacji terenu

Wyniki międzynarodowego projektu DORIS (EU-FP-7) - M. Przyłucka, M. Graniczny

Komplementarność danych interferometrycznych metody PSI oraz interferogramów. Rejon Rudy Śląskiej - Górny Śląsk. Dane z satelity TerraSAR-X

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy WWW.DQI.QOV.DI

Zastosowanie metod geofizycznych - metody tomografii elektrooporowej ERT w badaniach geozagrożeń klifu Jastrzębiej Góry i osuwiska "bachledzki Wierch" w Zakopanem

M. Kamiński

Mapa aktywnych osuwisk w rejonie klifu. Obraz kartograficzny jest wynikiem badań terenowych oraz analizy danych LIDAR.

< Zdjęcie przestawia aktywne koluwium osuwiskowe.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Położenie profili geofizycznych, wykonanych metodą tomografii elektrooporowej ERT (Electrical Resistivity Tomography)

Celem badań geofizycznych było rozpoznanie stref zawodnionych oraz określenie głębokości występowania stropu iłów zastoiskowych, które w tym rejonie klifu w Jastrzębiej Górze są przyczyną powstawania osuwisk.

W tym celu wykonano trzy profile geofizyczne Jasg1, jasg2 i Jasg.4

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Widok przestrzenny profili geofizycznych ERT

Na wszystkich profilach geofizycznych widoczne są wyraźne zaburzenia glacitektoniczne. Kolor czerwony obrazuje kompleksy litologiczne wysokooporowe (piaski i żwiry), kolor zielony (gliny i mułki) a kolor niebieski (iły zastoiskowe oraz piaski zawodnione i zasolone).Do kalibracji geologicznych profili geofizycznych użyto archiwalnych wierceń geologicznych, które pozwoliły doprecyzować zasięg występowania stropu iłow zastoiskowych.

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Model geologiczny 3D iłów zastoiskowych

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Osuwisko "Bachledzki Wierch - Zakopane

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Przekroje przez model woxelowy 3D

Podsumowanie

- Intensywny rozwój metod teledetekcyjnych stymuluje coraz częstsze ich stosowanie w pracach Państwowej Służby Geologicznej
- 2. Wiele z prowadzonych prac ma charakter wielodyscyplinarny, na styku geologii, geodezji, geofizyki, geografii, biologii itp.
- 3. W ramach PIG-PIB metody teledetekcyjne najintensywniej są wykorzystywane w Programie Geozagrożenia. Znalazło to swój wyraz w strukturze organizacyjnej poprzez powołanie Zespołu Teledetekcyjnego

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

Dziękuję za uwagę

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy